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Why Care About Mixed Material PMI in ITER? 

•  ITER First Wall/Divertor 
Is a Mixture of Be/W/C 
Materials 

•  Plasma Will Contact w/ 
Material Surfaces 

•  Material Migration 
Results in Formation of 
Mixed Materials 
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Comprehensive Approach to Essential ITER PFC Issues 
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 Bulk Convective     
Flows within SOL 

 Fundamental PFC Erosion & 
Redeposition Studies 

 Mixed Materials Issues 
– Steady-state 

– Transient ELM-like 

• Model Development &   
 Validation 

   Cross-field Main Plasma 
Transport into SOL 
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PISCES Divertor Simulator Facility 

Be-Compatible PISCES-B Facility 

Surface Science Diagnostics 
•  In-situ XPS, Auger, SIMS 
•  SEM & EDX 
•  Ex-situ SIMS, XPS, TDS 
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PISCES is a steady-state reflex arc plasma source that 
provides parameters relevant to edge physics and PMI 

issues in present and future confinement machines 
                Confinement 
         PISCES-B       Devices 

Ion flux (m-2 s-1)     1023             1023 
Ion energy (eV)     20-300 (bias)  10-300 (thermal) 
Heat flux (MW/m2)       1-10               1-10 
Te (eV)      2-40 (thermal)    1-100 (thermal) 
ne (m-3)      1017-1019        1018-1020 
Impurity fraction (%)    0.03-10         1-10 
Pulse length         continuous      10-30 

sec 
Target materials     C,W,Be,Li    C,W,Be,etc. 
  and coatings     (essentially any) 
Plasma species     H,D,He      H,D,T,He 

 Plasma   
 Source  

 Target   
   C, W, Be, Li    

  Surface  
 Analysis  
  System 

  Reciprocating  
Double 
Probe

  Sample Manipulator  

  Pyrometers  

  Dα monitor  
  

  

  Axial   
  Spectroscopic views   

Doppler 
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PISCES-B, and Its Associated Surface Analysis 
Laboratory, Are Compatible with  

Beryllium Operations. 
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Simulating ITER divertor geometry in linear device 
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Controlled Mixed Mat’l PMI Expt’s in Be seeded PISCES-
B Plasmas 
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Some Recent ITER Mixed Material Studies  
by PISCES Group & Collaborators 

•  Be Impurity Effects: 
–  Be-C Reduction of C Erosion 
–  Redeposited Be Erosion 
–  Be-W Alloying 

•  D/He Plasma Effects on W: 
–  Nanostructure formation 
–  D Retention Reduction 
–  Be Effects 

•  ELM Thermal Transient Effects 
•  D or T Retention in Mixed Materials 
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Be-C experiments 

Evolution of chemical erosion in Be seeded D plasma. 

Properties of C target surfaces after exposure. 

Extrapolation to ITER. 



PISCES 

2 

Carbon chemical erosion is mitigated in D-Be plasmas with 
characteristic decay time, Be/C. 

•   CD band intensity near C 
target drops w/ time as Be 
erosion signal from target 
increases 

•   The subtraction of CD band 
intensity taken in a region far 
from the target (z ~ 70 mm) is 
used to eliminate the effects of 
the intensity originating from wall 
carbon erosion 
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Be/C decreases with increased Be ion conc. in 
plasma,  cBe, but increases with Ei < 85 eV. 

•   cBe scanned keeping 
other parameters, 
Ei, Ts and Gi constant. 

•   Deposited Be on C target 
can be more readily sputtered 
at higher Ei, thus resulting 
in a longer tBe/C. 
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XPS analysis shows formation of (Be2C) as 
exposure temperature, Ts, is increased 

•   A carbidic peak appears and 
a graphitic peak disappears in C 
1s spectra. 

•   In Be 1s spectra, metallic 
peak shifts to a carbidic peak. 

•   Carbide forms more efficiently 
at higher surface temperature 

D ion fluence ~ 1.2x1026 m-2 
nBe+/ne ~ 0.1 %, 
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Be/C strongly depends on Ts. 

•   Higher Ts leads to reduced tBe/C 
Increased carbidic reaction 
with Ts may play a role 

•   Enthalpy of formation of Be2C: 
H298(Be2C) = -117.0±1.0 kJ/mol 

•   Pure Be and Be2C must also| 
contributes to the carbon 
erosion reduction especially at 
lower Ts and/or H298(Be2C) 
may be lower in a PSI environment 
than the equilibrium value. 
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Closed: Ts ~ 550-700 K 
Open:   Ts ~ 800-970 K 

Ei ~ 15 eV 
Ei ~ 30-40 eV 
Ei ~ 85 eV 

Be/C
scale [s] = 

      10-7 cBe
-1.9±0.1 Ei

0.9±0.3 i
-0.6±0.3  

                       x exp((4.8±0.5)x103/Ts) 
•   Be/C has a negative power 
law dependence on Gi. 

•   At higher fluxes, Be 
redeposition fraction is larger 
leading to increased tBe/C 

•   Under ITER like conditiions   
cBe = 0.05, Ei = 20 eV 
Ts = 1200 K, Gi = 1023 m-2s-1 

Federici et al., JNM 266-269 (1999) 

tBe/C ~ 6 ms << 1 s  
(ITER ELM Period) 

Be-C Formation Should Occur Between  
ITER Type-I ELMS  
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Be erosion experiments 
 Erosion of Redeposited Be Layers 

 Chemical Erosion of Be by D2 Plasmas 
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PMI of Redeposited Be 

Be

ITER 

-- DP-Be/Be: 
-- DP-Be/C: in-situ plasma-deposited Be on C 

in-situ plasma-deposited Be on Be 

Sputtered Be from first wall will (re-)deposit on 
Be first wall and divertor C and W materials. 

Is the sputtering yield of deposited Be 
layer the same as PC-Be? 

P-B
D-plasmaBe or C target

Evaporated Be 
from oven 
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(~1000 K during Be deposition) 
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Deposited Be on Be Deposited Be on C 

Higher D-retention at lower Ts 
Lower surface binding energy 

Formation of Be2C with higher 
surface binding energy 

Sputtering yield slightly decreased Enhanced sputtering 
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Chemical sputtering of Be released as BeD 

Surface temperature 
dependence 

Incident ion flux 
dependence 0
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Ei ~ 34 eV 

After Jacob & Roth 2007, this erosion process is 
categorized as “chemical sputtering”, since D-ions 
bombardment of a Be target causes a chemical 
reaction to form BeD2 on the surface. 
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The chemical sputtering yield of Be released as 
BeD is peaked at Ts ~ 440 K. 
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The peak Ts ~ 440 K is consistent with the onset 
temperature of the decomposition of BeD2 powder. 

BeD2 formation on Be surface exposed to D-plasma 
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D/He & D/He/Be mixed plasmas

W surface morphology

D Migration and Retention

---

---

PISCES

D/Be mixed plasmas

-W-Be formation

Tungsten (W) PMI Studies
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Be-W Alloy Formation Depends on Tsurf, Eion, Gion 

fBe=0.005,   texp=3600 s  fBe=0.003,   texp=4200 s 

W 
substrate 

W 
substrate 

Be-W surface (no 
interlayer) 

Plasma deposited Be 
3-5 mm thick 

Eion ~ 60 eV Eion ~ 10 eV Be12W 
interlayer 
~300 nm 

Be12W 
nucleation 

M. Baldwin et al, PSI 2006 
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PISCES-B: pure He plasma
Ts = 1200 K, Dt = 4290 s, 
Fluence = 2x1026 He+/m2, Ei = 25 eV

Transmission electron microscope (TEM)
in Kyushu Univ.

Scanning electron microscope (SEM)

NAGDIS-II: pure He plasma
Ts = 1250 K, Dt = 36,000 s, 
Fluence = 3.5x1027 He+/m2, Ei = 11 eV

RN01222007 

N. Ohno et al., in IAEA-TM, Vienna, 2006

Plasma simulators observe morphology change 
on W surfaces exposed to pure He plasma.
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SEM analysis reveals time dependent growth 
of nano-structured layer at Ts ~ 1120 K. 

1027 He+/m2

Pure He plasma, Ei = 60 eV, Ts = 1120 K, He+ flux ~ 4 x 1022 He+/m2/s  

1.2 x 1025 He+/m2 2.0 x 1026 He+/m2

Energy  (keV)

2 4 6 8 10 12 14

C
ounts 10

100

1000

10000

W W 
W W 

W 

W 

C 

Nano-structures 
are almost pure 
W as indicated x-
ray microanalysis 
with EDS
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Effect of He plasma on various grades of W  
PISCES

Rather similar growth rates of nanostructure on all types of tungsten 
 exposed to plasma above 900K. 

GHe= ~5×1022 m–2s–1 for all cases 
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In D2−He plasmas, nano-morphology persists, but 
growth rate depends on He+ flux. 

•   The presence of D2 does not appear 
to affect nano-morphology structure.  

•   But growth rate can be affected.  

•    After a little more than 1 h of He 
plasma exposure in D2−0.1He,  layer 
thickness is only ~0.5 mm.  

•   Layer thickness, ~2.0 mm in 
D2−0.2He is comparable to pure He.  

D+He= 4–6×1022 m–2s–1  
From M. J. Baldwin et al.,  
JNM 2009, in press. 
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Sputtering yield of W is reduced  
with He-induced fuzz by a factor of 6-8.  

13
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Produce fuzz on W surface due 
to He plasma exposure. 

Measure the time evolution of 
sputtered W I emission in Ar/He 
mixture plasma. 

w/ fuzz 
w/o fuzz 

-- Reduced areal density 
-- Re-deposition of sputtered W  
   atoms on surface before ejection 

W 

Ar 

W 
Ar 

Fuzz on W surface 

2 effects can be considered: 
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Mixing He with D-plasma suppresses blisters on 
W surface and reduces D-retention in W.  

Pure D2 plasma (SRWM-3b) 
D-fluence ~ 5e25 m-2, GD ~ 1.0e22 m-2s-1,  
Ts ~ 573 K, Ei ~ 60 eV 

D2-He mixture plasma (SRWM-4b) 
D-fluence ~ 5e25 m-2, GD ~ 0.9e22 m-2s-1,  
Ts ~ 573 K, Ei ~ 50 eV, nHe+/ne ~ 20 % 

From M. Miyamoto et al., NF 2009, 
 accepted for publication. 
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Helium reduces D retention in undamaged tungsten 

date D Fluence 
1026 D/m2 

D retained 
1020 D/m2 

12/08 0.75 (+He) 0.109 

12/08 1 3.77 

12/08 0.5 3.84 

03/08 1 3.27 

03/08 0.1 2.37 

With He 

PISCES

● Addition of He to the D plasma reduced D retention by about a factor of 35.  
● With He, D retention is mainly at the surface, 

whereas without He, D retention peaks ~ 1 micron beneath the surface.  

See more details in  
 talk of W. Wampler 

1e21 D/m2 ~ 3 mg/m2 
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Sequential He then D plasma exposure reveals 
He ion flux dependence for D suppression

HeD1 : GHe+ = 3.5e22 m-2s-1 for 200 sec. 
             200C, then D fluence 8e25m-2 

HeD2 : GHe+ = 3.3e22 m-2s-1 for 600 sec. 
             500C, then D fluence 8e25m-2 

HeD3 : GHe+ = 1.8e20 m-2s-1 for 8460 sec. 
             200C, then D fluence 5.5e25m-2 

•  He bubbles appear to form and 
 suppress D retention at 200 C 
 and 500 C when He ion flux 
 is large 
•  Low He ion flux is not effective 
 in suppressing D retention (TEM 
 shows no nanobubbles) 
•  Recall He ion flux dependence 
 of W fuzz growth, suggesting  
 these effects are possibly related 
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Mixed D/He plasma exposure in PISCES-A results in the appearance of 
small (nm) bubbles near the surface (< 50 nm) of the tungsten

From M. Miyamoto et al.,  
NF 2009, in press. 
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Simulated ELM Thermal Transient 
Effects on PMI: 

 - Pulsed Biasing 

 - Laser Heat Load 
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Simulated ELM Thermal Transient in PISCES-B 

•  During 1.5 MW/m2 power pulse 
graphite surface temperature 
rises to ~2000°C (by pyrometers) 

•  Bulk graphite temperature rise at 
back of sample ~20°C during 0.1 
s. pulse (thermocouple) 

•  Examine Effect of Heat Pulse on 
C & C-Be PMI 
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Simulated ELM Thermal Transient in PISCES 
Using Pulsed Laser Thermal Deposition 

•  Operate BELOW 
Ionization Threshold 

•  Close to or Below 
Ablation Thresholds 

•  Match Expected ELM 
Surface Heating 
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PISCES
ELM Simulation on W 

Laser Exposure of W at 200C for 15min 

•  Laser Parameters 
  5nsec 
  4mm spot 
  166mJ per Shot 
  ~108 W/cm2 

•  Plasma Parameters 
  Total Fluence ~ 1025 D+/m2 

   Ion Energy ~100eV 

Absorbed  
Energy Impact 
 ~58 MJ/m2 s1/2 

RW (l=1064nm) ~ 70% 

ELM Equivalent 
1MJ/m2 @ 0.3msec 
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PISCES
W Surface Analysis 

As Polished D Plasma 

Laser + Plasma Laser 

Synergistic effect between heat pulse and deuterium plasma 
causes greater surface roughening & material removal 

No Change 
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PISCES

ELM Thermal Load w/ Sufficient Sheath E-field &  
Saturated Surface Results in Arcing  

Laser + Plasma 
Saturated Surface, 
Esheath~15 V 

Laser + Plasma 
Saturated Surface, 

Esheath~90 V 
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PISCES
Effects of Loading on Damage 

 = 5x1022/m2 

 = 5x1023/m2 

 = 2x1024/m2 

Varying Fluence 

Vbias=125V 
=2x1022/m2-sec 

Te=11eV 
ne=2x1024/m3 
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Fundamental Be and W Erosion Studies

Angular distribution
Energy distribution
Sputtering yield
Metastable state fraction

Sputtering behavior of tungsten (in collaboration with NAGDIS)

The following topics on beryllium sputtering behavior 
will be investigated in conjunction with validation of 
simulation codes (WBC etc);

For both crystalline Be 
and deposited Be on 
Be/C/W  
 Validation for WBC 
Erosion/Redep Code

Surface temperature dependence of sputtering yield of W
Measurement of S/XB values  for W I (400.9 nm)
Angular and energy dependences of sputtered W atoms



PISCES PISCES-B

3

Sputtered Be atom emission distribution: Experiments

Be target (~ 21 mm dia.)

z

y or r

q

Be

~ 
50

 m
m


B

z ~ 150 mm

Deuterium plasma

LOS
Scanning double probe

Ta cap
nBe [1016 m-3]

Ei ~ 140 eV

Target region viewed through axial window 2-D profile of Be atom density

2. Abel inversion:

� 

ε(r) = − 1
π

dI(y)
dyr

a∫ dy
y2 − r2

� 

nBe = 4πε
σv 457.3nmne

1. Intensity I(y) measurement Local ground state 
Be atom density:

3.
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Sputtered Be atom emission distribution: Modeling

Nishijima, Brooks et al 
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Key Parameters Governing Mixed Mat’l PMI 

•  Impurity concentration in upstream SOL 
Plasma 

•  SOL Plasma Flows (Perp. & Parallel) 
•  SOL Plasma Density, Temperatures 

These Parameters Governed by Edge/SOL 
Transport Physics… 
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Comprehensive Approach to Essential ITER PFC Issues 

W 

 Bulk Convective     
Flows within SOL 

 Fundamental PFC Erosion & 
Redeposition Studies 

 Mixed Materials Issues 
– Steady-state 

– Transient ELM-like 

• Model Development &   
 Validation 

   Cross-field Main Plasma 
Transport into SOL 

Be 

C 

 Impurity Transport Thru SOL 
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Turbulent Transport Dominates Cross-field Transport  
in the Edge/SOL Region 

NSTX 
Courtesy S. Zweben, PPPL 
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Significant First Wall PMI at High Density Due to Blob 
Transport Across SOL 

Need to Understand Origin and Dynamics of  
Bursty Cross field Transport  

Rudakov et al, Nuc Fus 45, 1589 (2005) Whyte et al, PPCF 47, 1579 (2005) 
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What Determines Plasma Flow - I 

• Classical, Neoclassical Effects 
• Turbulent Transport-driven Equilibrium Flows 
• Turbulent Stresses 

Tynan, PPCF 1995 

� 

τ⊥ =
Ln
2

Γr
≈ τ || =

qR
Cs

LaBombard, PoP 2005 
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What Determines Plasma Flow - II 

• Classical, Neoclassical Effects 
• Turbulent Transport-driven Equilibrium Flows 
• Turbulent Stresses 

i 

j 

k 

� 

Πik (xi + dxi) = ˜ v i ˜ v k

� 

Πik (xi) = ˜ v i ˜ v k

Net Force in k-th direction: 

� 

Fk =
∂
∂xi

Πik
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Radially Sheared Azimuthally Symmetric Flowfield 



PISCES 

Independent Measurements of Shear Layer  

Sound speed
cs = (Te/Mi)1/2
= 2.8x105 cm/s
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Use Measured Reynolds Stress in Azimuthal 
Momentum Balance & Solve for V Profile

Tynan et al April 2006 PPCF  Holland et al, in press, PRL
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Estimate Dissipation from Measurements 

� 

Tidl
−a

a

∫ = 0.7eV

� 

Tgasdl
−a

a

∫ = 0.4eV

Measure:

Assume:

� 

Ti(0) > Ti(a)
Tgas(a) = Twall

µii = 3
10

ρi
2ν ii

Pgas = ngasTgas = const

� 

µ ii ≈ 4 ×10
4cm2 /sec

µii(0) > µii(a)
ν i0 ~ 6 ×10

3 sec−1

Tynan et al, April 2006 
PPCF, Holland et al, 
in press, PRL

µii ∝ niTi
1/2
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Measured Velocity Profile Consistent with Turbulent Momentum Balance 

Tynan et al, PPCF-06, Holland et al, PRL-06
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Evidence Linking Turbulent Stresses & 
Flows in Tokamaks 

Sanchez, JNM’05 Hidalgo, PRL’03 

Need to Include This Physics in Edge/SOL Plasma Models –  
May Be a Significant Contributor to Edge Flows! 
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Concluding Comments 

•  Mixed Material Phenomena Often Emerge in 
Surprising Ways 
–  Need to Investigate Relevant Permutations in Off-

line Facilities & Existing Tokamaks 
•  Can Govern Key ITER PMI Issues 

–  T Inventory Management 
–  PMI Robustness & Lifetime 
–  Divertor Performance 
–  Dust Formation, …. 

•  Formation Mechanisms Strongly Link PMI and Edge/
SOL Transport Physics 
–  Must Understand Edge Flow Physics & 

Incorporate into PMI Modeling 


